China OEM DN 65 Grooved Flexible Coupling with FM UL Certificate in Fire System Project

Product Description

Product Description

A grooved reducing flex joint is a mechanical pipe joint that allows pipes of different diameters to be joined while providing a degree of flexibility. These couplings consist of 2 grooved end fittings and a flexible gasket or sleeve that is installed on the pipe. Grooves on the pipe ends provide a strong mechanical connection when the fitting is tightened.

Application:
Grooved reducing flexible joints are commonly used in a variety of piping systems such as:

CHINAMFG (Heating, Ventilation, and Air Conditioning): Used to connect ducts in CHINAMFG systems where flexibility may be required due to thermal expansion and contraction.

Fire Protection Systems: Typically used in fire sprinkler systems to connect pipes of different sizes while allowing for movement due to temperature changes.

Water and Wastewater Systems: For water and drainage systems where flexibility and ease of installation are important.

Industrial Piping: Used in industrial applications where grooved coupling systems are favored for their simplicity and speed of installation.

Material standards for groove couplings:
Material standards for grooved couplings are often set by industry organizations and standards bodies. The material used for grooved joints is usually ductile iron, but stainless steel and other materials can also be used, depending on the application and specific requirements.

Standards governing grooved couplings include:

ANSI/AWWA C606 – Groove and Shoulder Joints for Ductile Iron Pressure Piping and Fittings: This standard covers groove and shoulder joints for ductile iron pressure piping, fittings, and other components.

ASTM A536 – Standard Specification for Ductile Iron Castings: This standard covers compositional, mechanical, and other requirements for ductile iron castings.

NFPA 13 – Standard for Installation of Sprinkler Systems: This standard, published by the National Fire Protection Association, provides guidance for the installation of sprinkler systems, including the use of grooved joints.

Nominal Size
mm/in
Pipe O.D

mm

Working
Pressure
PSI/Mpa
Dimensions      mm Bolt Size Certificate
L H W NO.-Size

mm

65X50/212X2 73X60 300/2.07 143 102 45 M10X65 FM  UL
65X50/30DX2 76X60 300/2.07 143 102 45 M10X65 FM  UL
80X50/3X2 89X60 300/2.07 163 118 47 M12X70 FMUL
80X65/3X212 89X73 300/2.07 163 118 47 M12X70 FMUL
100X50/4X2 114X60 300/2.07 200 150 50 M12X70 FMUL
100X65/4X212 114X73 300/2.07 200 150 50 M12X70 FM  UL
100X65/4X3OD 114X76 300/2.07 200 150 50 M12X70 FM  UL
100X80/4X3 114X89 300/2.07 200 150 50 M12X70 FMUL
150X100/612ODX4 165X114 300/2.07 270 200 51 M16X85 FM  UL
150X80/6X3 168X89 300/2.07 270 200 51 M16X85 FMUL
150X100/6X4 168X114 300/2.07 270 200 51 M16X85 FM  UL
200X150/8X612OD 219X165 300/2.07 335 260 63 M20X110 FM  UL
200X150/8X6 219X168 300/2.07 335 260 63 M20X110 FMUL

Quality Control:

what is the rigid and flexible Coupling difference?

Coupling play an important role in connecting pipe segments to prevent leaks caused by damaged or damaged joints while maintaining the integrity of the pipe in the process. It is a very suitable fitting for the pipe and pipe industry. Most pipe installations require multiple pipe sections to be joined together or cut to facilitate changing direction and traversing obstacles. A fitting is a concise pipe or pipe. It has a socket or female thread at 1 or both ends. Fitting allows 2 pipes or pipes of the same or different sizes to be joined together to form a long pipe.

Flexible coupling
Flexible couplings are designed to transmit torque while allowing some radial, axial and angular misalignment. They can accommodate angular misalignment of up to a few degrees and some parallel misalignment. Elastic couplings allow for some angular misalignment and axial movement, meaning they can be used to create smooth bends and absorb thermal expansion contractions in piping systems. In some cases, the use of elastic couplings can even exclude conventional expansion joints, loops and other expansion devices from the system entirely. When assembling a stretch rubber gasket, the gasket is slightly smaller than the pipe diameter at both pipe ends and produces the first seal. The 2 halves of the coupling are then placed around the washers that adapt to them. The coupling halves are bolted together to further improve the seal.

FAQ

1. What is the minimum quantity of the order? 
Answer: The purchase volume of mixed products is 4 tons

2. How long is the delivery time of the order?
Answer: The delivery time for general orders is about 30 days. If the order is urgent and we have stock, around 7 days.

3. What payment methods do you accept?
Answer: We accept payment terms such as TT, L/C, DP, Western Union, Paypal, etc.

4. Where is your departure port of shipment? Is it possible to deliver to the designated warehouse?
Answer: The port of departure of our goods is generally ZheJiang Port or HangZhou Port. We can transport the goods to designated warehouses, such as HangZhou, HangZhou, etc.

5. What certificates do your products have?
Answer: Our products have FM/UL certificates, and we cooperate with third-party quality inspection certification before the factory, such as SGS,TUV

6.What are the series of your products?
Answer: Our products are divided into heavy series, medium series and light series according to different markets and standards. In order to buy more competitive products for you, please communicate your purchasing needs with the salesperson.

7. Do product packaging cartons and labels support customization?
Answer: Packaging cartons and labels can be customized according to customer requirements.

8.Does the purchased product support customization?
Answer: The product supports customization, but there are purchase quantity requirements and mold costs. For details, please consult the salesperson.

9.What are the packaging methods of the product?
Answer: The packaging of the product includes carton packaging, pallet packaging, wooden box packaging, and woven bag packaging.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible coupling

Can flexible couplings be used in precision motion control systems?

Yes, flexible couplings can be used in precision motion control systems, but careful consideration must be given to their selection and application. Precision motion control systems require high accuracy, repeatability, and minimal backlash. Flexible couplings can play a crucial role in such systems when chosen appropriately and used in the right conditions.

Selection Criteria: When selecting a flexible coupling for a precision motion control system, several key factors should be considered:

  • Backlash: Look for couplings with minimal or no backlash to ensure accurate motion transmission and precise positioning.
  • Torsional Stiffness: Choose a coupling with sufficient torsional stiffness to minimize torsional deflection and maintain accurate motion control.
  • Misalignment Compensation: Ensure the coupling can accommodate the required misalignment without introducing significant variations in motion accuracy.
  • Dynamic Performance: Evaluate the coupling’s dynamic behavior under varying speeds and loads to ensure smooth and precise motion control during operation.
  • Material and Construction: Consider the material and construction of the coupling to ensure it can withstand the specific environmental conditions and loads of the motion control system.
  • Size and Space Constraints: Choose a compact and lightweight coupling that fits within the available space and does not add excessive inertia to the system.

Applications: Flexible couplings are commonly used in precision motion control systems, such as robotics, CNC machines, semiconductor manufacturing equipment, optical systems, and high-precision measurement instruments. They help transmit motion from motors to various components, such as lead screws, spindles, or precision gears, while compensating for misalignments and providing shock and vibration absorption.

Specialized Couplings: For ultra-high precision applications, specialized couplings, such as zero-backlash or torsionally rigid couplings, may be preferred. These couplings are designed to provide precise motion transmission without any play or torsional deflection, making them suitable for demanding motion control tasks.

Installation and Alignment: Proper installation and alignment are critical to achieving optimal performance in precision motion control systems. Precise alignment of the coupling and connected components helps maintain accurate motion transmission and minimizes eccentricities that could impact the system’s precision.

Summary: Flexible couplings can indeed be used in precision motion control systems when chosen and applied correctly. By considering factors like backlash, torsional stiffness, misalignment compensation, and dynamic performance, users can select the right coupling to ensure high accuracy, repeatability, and reliable motion control in their specific application.

flexible coupling

What are the maintenance intervals and practices for extending the life of a flexible coupling?

Proper maintenance of a flexible coupling is essential to ensure its longevity and reliable performance. The maintenance intervals and practices for flexible couplings may vary depending on the coupling type, application, and operating conditions. Here are some general maintenance guidelines to extend the life of a flexible coupling:

  • Regular Inspection: Conduct visual inspections of the coupling regularly to check for signs of wear, damage, or misalignment. Look for cracks, tears, corrosion, or any other visible issues.
  • Lubrication: Some flexible couplings may require periodic lubrication to reduce friction and wear. Refer to the manufacturer’s guidelines for the appropriate lubrication type and schedule.
  • Alignment Checks: Ensure that the connected shafts remain properly aligned. Misalignment can lead to premature wear and failure of the coupling and other components.
  • Torque Monitoring: Monitor the torque levels in the system and ensure they are within the coupling’s rated capacity. Excessive torque can overload the coupling and cause damage.
  • Temperature and Environmental Considerations: Ensure that the operating temperatures and environmental conditions are within the coupling’s specified limits. Extreme temperatures, aggressive chemicals, or corrosive environments can impact the coupling’s performance.
  • Inspection After Shock Loads: If the system experiences shock loads or unexpected impacts, inspect the coupling for any signs of damage immediately.
  • Replace Damaged or Worn Couplings: If any damage or wear is detected during inspections, replace the flexible coupling promptly to avoid potential failures.
  • Periodic Re-Tightening: For certain coupling designs, periodic re-tightening of fasteners may be necessary to maintain proper clamping force.
  • Follow Manufacturer’s Guidelines: Always follow the maintenance instructions provided by the coupling manufacturer. They can provide specific recommendations based on the coupling model and application.

It is crucial to develop a maintenance plan specific to the application and coupling type. Regularly scheduled maintenance, adherence to recommended practices, and proactive inspection can help identify issues early and prevent costly breakdowns. Additionally, record-keeping of maintenance activities can provide valuable data on the coupling’s performance and aid in future maintenance decisions.

flexible coupling

What are the differences between elastomeric and metallic flexible coupling designs?

Elastomeric and metallic flexible couplings are two distinct designs used to transmit torque and accommodate misalignment in mechanical systems. Each type offers unique characteristics and advantages, making them suitable for different applications.

Elastomeric Flexible Couplings:

Elastomeric flexible couplings, also known as flexible or jaw couplings, employ an elastomeric material (rubber or similar) as the flexible element. The elastomer is typically molded between two hubs, and it acts as the connector between the driving and driven shafts. The key differences and characteristics of elastomeric couplings include:

  • Misalignment Compensation: Elastomeric couplings are designed to handle moderate levels of angular, parallel, and axial misalignment. The elastomeric material flexes to accommodate the misalignment while transmitting torque between the shafts.
  • Vibration Damping: The elastomeric material in these couplings offers excellent vibration dampening properties, reducing the transmission of vibrations from one shaft to another. This feature helps protect connected equipment from excessive vibrations and enhances system reliability.
  • Shock Load Absorption: Elastomeric couplings can absorb and dampen shock loads, protecting the system from sudden impacts or overloads.
  • Cost-Effective: Elastomeric couplings are generally more cost-effective compared to metallic couplings, making them a popular choice for various industrial applications.
  • Simple Design and Installation: Elastomeric couplings often have a straightforward design, allowing for easy installation and maintenance.
  • Lower Torque Capacity: These couplings have a lower torque capacity compared to metallic couplings, making them suitable for applications with moderate torque requirements.
  • Common Applications: Elastomeric couplings are commonly used in pumps, compressors, fans, conveyors, and other applications that require moderate torque transmission and misalignment compensation.

Metallic Flexible Couplings:

Metallic flexible couplings use metal components (such as steel, stainless steel, or aluminum) to connect the driving and driven shafts. The metallic designs can vary significantly depending on the type of metallic coupling, but some general characteristics include:

  • High Torque Capacity: Metallic couplings have higher torque transmission capabilities compared to elastomeric couplings. They are well-suited for applications requiring high torque handling.
  • Misalignment Compensation: Depending on the design, some metallic couplings can accommodate minimal misalignment, but they are generally not as flexible as elastomeric couplings in this regard.
  • Stiffer Construction: Metallic couplings are generally stiffer than elastomeric couplings, offering less vibration dampening but higher torsional stiffness.
  • Compact Design: Metallic couplings can have a more compact design, making them suitable for applications with limited space.
  • Higher Precision: Metallic couplings often offer higher precision and concentricity, resulting in better shaft alignment.
  • Higher Cost: Metallic couplings are typically more expensive than elastomeric couplings due to their construction and higher torque capacity.
  • Common Applications: Metallic couplings are commonly used in high-speed machinery, precision equipment, robotics, and applications with high torque requirements.

Summary:

In summary, the main differences between elastomeric and metallic flexible coupling designs lie in their flexibility, torque capacity, vibration dampening, cost, and applications. Elastomeric couplings are suitable for applications with moderate torque, misalignment compensation, and vibration dampening requirements. On the other hand, metallic couplings are chosen for applications with higher torque and precision requirements, where flexibility and vibration dampening are less critical.

China OEM DN 65 Grooved Flexible Coupling with FM UL Certificate in Fire System Project  China OEM DN 65 Grooved Flexible Coupling with FM UL Certificate in Fire System Project
editor by CX 2024-05-02